Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMJ Open ; 12(12): e064135, 2022 12 23.
Article in English | MEDLINE | ID: covidwho-2193776

ABSTRACT

OBJECTIVES: To evaluate the benefits of vaccination on the case fatality rate (CFR) for COVID-19 infections. DESIGN, SETTING AND PARTICIPANTS: The US Department of Veterans Affairs has 130 medical centres. We created multivariate models from these data-339 772 patients with COVID-19-as of 30 September 2021. OUTCOME MEASURES: The primary outcome for all models was death within 60 days of the diagnosis. Logistic regression was used to derive adjusted ORs for vaccination and infection with Delta versus earlier variants. Models were adjusted for confounding factors, including demographics, comorbidity indices and novel parameters representing prior diagnoses, vital signs/baseline laboratory tests and outpatient treatments. Patients with a Delta infection were divided into eight cohorts based on the time from vaccination to diagnosis. A common model was used to estimate the odds of death associated with vaccination for each cohort relative to that of unvaccinated patients. RESULTS: 9.1% of subjects were vaccinated. 21.5% had the Delta variant. 18 120 patients (5.33%) died within 60 days of their diagnoses. The adjusted OR for a Delta infection was 1.87±0.05, which corresponds to a relative risk (RR) of 1.78. The overall adjusted OR for prior vaccination was 0.280±0.011 corresponding to an RR of 0.291. Raw CFR rose steadily after 10-14 weeks. The OR for vaccination remained stable for 10-34 weeks. CONCLUSIONS: Our CFR model controls for the severity of confounding factors and priority of vaccination, rather than solely using the presence of comorbidities. Our results confirm that Delta was more lethal than earlier variants and that vaccination is an effective means of preventing death. After adjusting for major selection biases, we found no evidence that the benefits of vaccination on CFR declined over 34 weeks. We suggest that this model can be used to evaluate vaccines designed for emerging variants.


Subject(s)
COVID-19 , Hepatitis D , Veterans , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
2.
Curr Res Struct Biol ; 4: 220-230, 2022.
Article in English | MEDLINE | ID: covidwho-1906928

ABSTRACT

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic and catastrophic, worldwide health and economic impacts. The spike protein on the viral surface is responsible for viral entry into the host cell. The binding of spike protein to the host cell receptor ACE2 is the first step leading to fusion of the host and viral membranes. Despite the vast amount of structure data that has been generated for the spike protein of SARS-CoV-2, many of the detailed structures of the spike protein in different stages of the fusion pathway are unknown, leaving a wealth of potential drug-target space unexplored. The atomic-scale structure of the complete S2 segment, as well as the complete fusion intermediate are also unknown and represent major gaps in our knowledge of the infectious pathway of SAR-CoV-2. The conformational changes of the spike protein during this process are similarly not well understood. Here we present structures of the spike protein at different stages of the fusion process. With the transitions being a necessary step before the receptor binding, we propose sites along the transition pathways as potential targets for drug development.

SELECTION OF CITATIONS
SEARCH DETAIL